
4th International Conference on Mechanical Engineering December 26-28, 2001, Dhaka, Bangladesh/pp. VI 227-233

Section VI: Manufacturing Process 227

OPTIMIZATION OF PROCESS PLANNING PARAMETERS FOR
ROTATIONAL COMPONENTS BY GENETIC ALGORITHMS

Nafis Ahmad* and A.F.M. Anwarul Haque

Department of IPE, BUET, Dhaka

Abstract In CAPP systems process parameter optimization is one of the key areas for research and
development. Traditional techniques have very limited scope because of the complexity of the
optimization problem. Due to the rapid development of computer technology Genetic Algorithms
(GAs), which are robust search algorithm, have been found to be suitable and efficient tools for
optimization in such cases. In this work process planning parameters for machining rotational
components are optimized by a Genetic Algorithm Optimization Toolbox developed in Matlab
environment. Here machining time is considered as the objective function and constraints are
machine capacity, limits of feed rate, depth of cut, cutting speed etc. Machining time is minimized
through a series of generations while some genetic operators are applied at each generation. The
result of the work shows how a complex optimization problem is handle by a genetic algorithm and
converges very quickly.

 Keywords: CAPP, GA, Optimization

INTRODUCTION

 Optimization of process planning is one of the
foremost targets of Manufacturing Systems. Numbers of
research works are performed for generating optimum
process plan. The optimum process plan may be on the
basis of time or cost or on the basis of some weighted
combination of these two. Tool selection, machine
selection, process selection and tool path selection,
process parameter selection are the most important areas
for optimization in process planning. Process parameter
optimization is the final stage of a CAPP system.
Determination of optimum parameters is one of the vital
stages of process planning since the economy of
machining operation plays the most important role in
increasing productivity and competitiveness. Genetic
algorithm is one of the most efficient tools for
optimization of such problems. This paper presents the
application of GA in process planning parameters
optimization.

GA AND OTHER SEARCH ALGORITHMS

 Many works have so far been done to optimize these
parameters by using different optimization techniques
like goal programming, multistage dynamic
programming, linear programming, geometric
programming, branch and bound algorithm etc. But all
of them face great difficulties when the number of
variables increases, because the problem becomes
combinatorially explosive and hence computationally
complex [1]. Different researchers used different
techniques to optimize process parameters but all of
those techniques have their own limitations.

 Direct search methods include function evaluation and
comparisons only. Gradient search methods need values
of function and its derivatives, and their
computerizations are also problematic. They are more
difficult than the direct search methods, but they can
yield more accurate for some computational efforts.

 Derivative-based mathematical optimizations are not
manageable for optimizing functions of discrete
variables. Dynamic programming that may be applied to
problems whose solution involves a multistage decision
process, can handle both continuous and discrete
variables. Contrary to many other optimization methods
it can yield a global optimum solution. However if the
optimization problem involves a large number of
independent parameters with a wide range of values (as
in the case of optimization of cutting parameters), the
use of dynamic programming is limited. As the numbers
of variables and constraints increases, the optimum has
a tendency to grow flatter with less probability that the
realizable optimum will be a mathematical optimum,
and hence computational effort increases considerably.

 Geometric programming is a useful method that can
be used for solving nonlinear problems subject to
nonlinear constraints, especially if the objective
function to be optimized is a polynomial with fractional
and negative exponents, while the constraints may be
incorporated in the solution techniques. It is more
powerful than other mathematical optimization
techniques when the problem is restricted by one or two
constraints. However if the degree of difficulty
increases, the formulated problem might be more
complicated than the original problem. Geometric
programming can only handle continuous variables. *Email: nafis@ipe.buet.edu

ICME 2001, Dhaka, December 26-28

Section VI: Manufacturing Process 228

 The solution to the optimization problems, which
includes real value variables, can be obtained using
numerous methods. There is no efficient all-purpose
optimization method available for nonlinear
programming problems like process parameter
optimization. The computational time and cost involved
in the determination of optimal parameters commonly
depends on the complexity or simplicity of the model.
Some models can produce accurate solutions by making
rigorous computation, which is not economic in terms
of computation time and cost. Sometimes the solution
from these models may not be optimal. Some other
models may develop solutions far from the optimum in
a fast manner. Therefore a compromise between the
high accuracy of a rigorous solution and low accuracy
of an oversimplified solution should be made.

 Genetic Algorithms (GAs) are robust search
algorithms that are based on the mechanics of natural
selection and natural genetics. They combine the idea of
"survival of the fittest" with some of the mechanics of
genetics to form a highly effective search algorithm.
Genetic algorithms belong to a class of stochastic
optimization techniques known as evolutionary
algorithms. Among the three major types of
evolutionary algorithms (genetic algorithms,
evolutionary programming, and evolution strategies)
genetic algorithms are the mostly widely used. GAs are
most often used for optimization of various systems,
especially complex problems such as those involving
manufacturing systems analysis.

GA AND NATURAL EVOLUTION PROCESS

 Genetic Algorithms (GAs) are search strategy which
are able to search very large solution spaces efficiently
by providing a concise computational cost, since they
use probabilistic transaction rules instead of
deterministic ones. They are easy to implement and are
increasingly used to solve inherently intractable
problems quickly. Although GAs are heuristic
procedures themselves, they test a wealth of samplings
from different regions of the search space for fitness
simultaneously, and sort out and exploit regions of
interest very quickly [1].

 The idea behind genetic algorithm is based on the
natural evolution phenomena. Rabbits are taken as
example: at any given time there is a population of
rabbits. Some of them are faster and smarter than the
other rabbits. These faster, smarter rabbits are less likely
to be eaten by foxes, and therefore more of them survive
and make more rabbits. Of course, some of the slower,
dumber rabbits will survive just because they are lucky.
This surviving population of rabbits starts breeding. The
breeding results in a good mixture of rabbits’ genetic
material: some slow rabbits breed with fast rabbits,
some fast with fast, some smart rabbits with dumb
rabbits, and so on. As a resulting baby rabbits will (on
average) be faster and smarter than those in the original

population because more faster, smarter rabbits survived
the foxes. (It is a good thing that the foxes are
undergoing a similar process-otherwise the rabbits
might become too fast and smart for the foxes to catch
any of them). In the similar fashion, in an artificial
genetic algorithm, a crude population is refined through
a series of generations while some genetic operators
work on the population.

TYPICAL GA PROCEDURE

 GAs start with an initial set of random solutions called
the population. There is no strict rule to determine the
population size. Population sizes of 100-200 are
common in GA research. Through the steps described
below, the population will eventually converge. Larger
population size ensures greater diversity but requires
more computer resource. Once the population size is
chosen, the initial population is randomly generated.

 If the population has 20 strings of 10 bits then
10.20=200 bits must be set to either 0 or 1. The
computer sets the value of 200 bit positions with
simulated coin toss. Any string with decimal equivalent
greater than the maximum limits is discarded and
replaced with another randomly chosen string that meets
the constraint. For example, range of a parameter is
from 1000 to 1100 and an individual of the population is
randomly taken as 0111 or 1101, which falls outside the
above range. This individual will be discarded and
another individual will be random taken and checked
whether it falls within the range. This process continues
until all the individual of the population are within the
specific range.

 Once the chromosomes are coded as bit strings, the
genetic algorithm manipulates these strings using three
genetic operators —reproduction, crossover, and
mutation. The chromosomes are said to evolve through
successive generations. In each generation, the fitness of
each chromosome is evaluated; chromosomes with a
higher fitness value are more likely to be selected.

 Reproduction takes the current population of bit
strings (that have already been evaluated and given a
fitness value), makes copies of the strings with better
fitness values, and places these strings in a "mating
pool". The reproduction operator may be implemented
in algorithmic form in different ways. The easiest way is
to create a biased roulette wheel slot sized in
proportion to each current string in the population.
Another selection technique is normalized
geometricselection which is a ranking selection function
based on the normalized geometric distribution.

 After the selection, the strings are paired up, and a
percentage of the pairs trade parts of their strings. This
is known as crossover. Different crossover techniques
are used in GA. Simple crossover involves two
parentsand crossover points are selected randomly. If

ICME 2001, Dhaka, December 26-28

Section VI: Manufacturing Process

two parents to be used for generating new chromosomes
are
 {Parent 1: 0 1 1 0 1 } and {Parent 2: 1 0 1 1 0 } and if
a crossover point is chosen randomly as 4 the following
children will be produced: {Child 1: 0 1 1 0 0} and
{Child 2: 1 0 1 1 1}

 Here first four digits of child-1 (i.e. 0 1 1 0) are from
parent-1 and the rest of the digits (i.e. 1) from parent-2.
Similarly first 4 digits of child-2 are from parent-2 and
the rest of the digits from parent-1. Figure 1 is the
graphical representation of the crossover function.

 These newly formed strings by crossover operator are
then subjected to a random screening, where random
bits in random strings are picked and modified. This is
known as mutation. Mutation introduces random
variations into the population. It zaps a ‘0’ to a ‘1’ and
vise versa in a binary string. Each bit position for every
member of the population is examined. The computer
randomly decides whether mutation should occur or not.
Mutation is usually performed with low probability;
otherwise it will defeat the order building being
generated through selection and crossover. Mutation
attempts to bump the population gently onto a slightly
better course.

 As an example consider a string as shown in figure 2.
Shaded and clear boxes represent two different options
for a bit position in a string:’1’ and ‘0’. If the sixth
position of the string is randomly chosen as mutation
point, ‘1’ at that position will be replaced by ‘0’ by
mutation operator.

 After this step, the remaining strings form the next
generation of bit strings. They are evaluated, given a
fitness value, and again subjected to reproduction,
crossover, and mutation. This combined process of
exploiting knowledge about a search space
(reproduction) and exploring a search space (crossover,
mutation) is what drives the performance of a genetic
algorithm. Over time, bad bit strings disappear from a
population, while good bit strings live on and reproduce
with other good strings to form even better strings.

CODING THE CROMOSOMES

 The individuals comprising the population are known
as chromosomes. In most genetic algorithm
applications, the chromosomes are coded as a series of
zeroes and ones, or a binary bit string. This usually
involves discretization of the search space into a certain
number of points that can be represented by a certain
length of bit string. For binary bit strings, this would
mean that a search space would need to be split into 2n

 points
example
of 3 one
search s
101, 110
transform
represen
dimensio
concaten
value is
using bin

 In pro
valued
controlle

 Rotati
the part
Dependi
or other
rough tu
from the
part of t
turning
such as
optimize

 Again,
different
identify
time for
includes
overtrav

Fig 7.2 : Crossover diagram

Parent 2

Parent 1

Child 1

Child 2

Crossover point

F

1 0 0 1 1 1 1 0

1 0 0 1 1 0 1 0

ig 7.3 : Mutation
, represented by a bit string of length n. For
 a 3 bit string may be maximum binary number
s: 111. Its decimal equivalent is 23-1=7. So the
pace is from 0-7 (i.e. 000. 001, 010, 011, 100,
 and 111 in binary system). Encoding schemes
 points in a parameter space into bit string

tation. For example a point (11,6,9) in a three
nal parameter space can be represented as a
ated binary string, in which each coordinate
encoded as a gene composed of four binary bits
ary coding.

cess plann
variables
d simulta

PRP

onal part
axis, are
ng on the
 finishing
rning ope
 blank b
he machi
operation
feed rate
d only fo

 a machi
 power a
the mach
 machinin
 machini
el of the

1 0 1 1 0 1 1 0 1 0 0 1
11 6 9
229

ing parameter optimization where real
 are involved, the variables are
neously within their ranges.

BLEM STATEMENT

s, which have surfaces symmetric to
 usually machined by lathes machine.
 required surface finish, rough turning
 operations are required. But initially
ration creates the shape of the surface

y removing a materials and the major
ning time is usually required for rough
. For this reason cutting parameters
, depth of cut, cutting speed etc. are
r rough turning operation.

ne shop may have several lathes with
nd rpm. So, it is also necessary to

ine and rpm that will require minimum
g a specific surface. Though total time
g time, setup time, approach and
 cutting tool, in most of the cases,

ICME 2001, Dhaka, December 26-28

Section VI: Manufacturing Process 230

machining time is responsible for the major part of total
cost. Other cost is not as significant as machining time.
So, in this optimization problem the cutting parameters
are determined by minimizing the machining time.

PROBLEM FORMULATION

 It is already mentioned that only cylindrical surfaces
are considered in this work. These types of surfaces are
machined by turning operation to attain the required
shape of the surfaces. An example is presented in figure
4. For a horizontal cylindrical surface machining
time(Tm) for turning operation depends on

the total length of the surface (L) to be machined, feed
rate (f) and rotational speed (Nw) of the work piece [3]
i.e. machining time is:

Tm=
wNf

L
×

 (1)

If the length of a feature is Lf and number of pass is
npass then

L= Lf × npass. So,

Tm=
w

passf

Nf
nL

×
×

 (2)

 In figure 3 depth of cut, initial radius and final radius
are denoted by d, Ri and Rf respectively. Therefore,

Total cut = Ri-Rf
Semifinish cut = Remainder of ((Ri-Rf), d)
 npass= {(Ri-Rf)-Remainder of ((Ri-Rf), d)}/d (3)

 To minimize the rough turning, the material removal
rate should be as high as possible. As material removal
rate is proportional to depth of cut, feed rate and cutting
speed, these parameters should be increased for a higher
material removal rate. But these parameters cannot be
increase indefinitely due to limitation of maximum
allowable force on the cutting tool and also maximum
power limit of the machine tool in some cases. Power
(P), and cutting force (Fc) can be calculated by
equations 4 and 5 [3]. These two values are checked
against their limits (i.e. Pmax and Fmax) when depth of
cut, feed rate and cutting speed is optimized.
 Power, P=Fc×V (4)
 Cutting force, Fc=Cf ×fa×db (5)

 Here Cf , a, b are constants. Here V, f and d are
independent variables.

 Rough turning operation are usually performed at
some low cutting speed with high depth of cut and high
feed rate as the metal removal rate is more important
than surface finish.

 From the machine database we can collect the
available spindle speeds. The effective limits of rpm of
the spindle is chosen according to the following
equation,
 Nmax=Max (available speeds) (6)
 Nmin=Min (available speeds) (7)
 If the actual rpm of the spindle is Nw, can be
calculated by equation,

Nw=
R
V

××
×

π2
1000

 This rpm is checked against the limits (Nmin and Nmax)
during the optimization process.
 As a result the optimization model becomes

 Minimize, Tm=
w

passf

Nf
nL

×
×

 (8)

 Subject to
 fmin < f < fmax (9)
 Vmin < V < Vmax (10)
 dmin < d < dmax (11)
 Fc < Fmax i.e. Cf ×fa×db< Fmax (12)

 Nmin<N<Nmax i.e. Nmin< R
V

××
×

π2
1000

<Nmax (13)

 Pm < Pmax i.e. Cf ×fa×db×V < Pmax (14)

 This is a nonlinear optimization problem where feed
rate, cutting speed and depth of cut are independent and
real valued parameters. Limits of these three parameters
depend on the workpiece and tool material combination.
Here workpiece and tool materials are Low C free
machining steel and uncoated carbide. The fourth
constraint is maximum allowable force on cutting tool.
Typical values are taken for the last three constraints i.e.
cutting force, rpm and power of machines. As these
parameters are not independent, penalty method is used
[2] to keep them within their ranges.

PLOTS AND TABLES

 Figure 4 shows the changes of the average and best
fitness over the generations. Figures 5-13 are related to
the parameters at different generation.

RESULT FROM MATLAB PROGRAM

 As stated in earlier the first step of GA is to create an
initial population. Individual values for different
parameters in the initial population are chosen within
their ranges at random. Figure 5, 8 and 11 are the initial
values of depth of cut, feed rate and cutting speed. It is
clear from these figures that initial population is spread

Rough turn
1Rough turn
2

Rf Ri

Fig. 3 Rough turning of a
l d l f

Semifinish turn

Depth of cut

d

Lf

ICME 2001, Dhaka, December 26-28

Section VI: Manufacturing Process 231

over the whole solution space instead of being localized
because initial population is created randomly. This
diversity of the population increases the region under
search to find the global optima.

 From the initial set of data, GA starts to converge very
quickly by using some genetic operators such as
reproduction, crossover, and mutation (discussed in
section7.3). Figure 6, 9 and 12 describe the intermediate
situation of the cutting parameters. These parameters are
plotted after running the program for 20 generation. It is
assumed that from the initial random positions the
parameters are moving toward some specific values.

Fig. 4 Generation vs. Average and best fitness

 After 40 generation final values of these parameters
are plotted in figure 7, 10 and 13. These three figures
demonstrate that when GA reaches to or very close to
optimum solution, all the values of a specific parameter
in the final population becomes similar. Some exception
exist i.e. some values are away from the optimum at
each generation because GA checks whether it is
proceeding towards a local optima or global by mutation
operator.

 It is also clear from figure 4 that the convergence rate
at an earlier stage is much more higher than that of the
later stage. Average fitness and best fitness values
decrease very rapidly in the initial stages [1-20
generation]. As the number of generation increases, rate
of changes in these two fitness values decrease rapidly
and programs are so designed that genetic algorithm
terminates when no significant improvement occurs in
the solution. Usually maximum number of generation is
set before the program starts. Almost all the individuals
in a population become similar at the final stage [figure
7,10 and 13.

 In table 1 comparisons of the parameters are presented
after 40 generation and 100 generation with population
size 50 and 100 respectively. It explains the advantage
of high population size and maximum number of
generation for the optimization problem.

 Total machining time, which is the objective function
in this minimization problem is improved from 131
minutes to 114 minutes i.e. almost 13% over the 60
generation. Here cutting force on the tool, which
reaches near the maximum limit (2kN) at 40th
generation and same as the maximum limit at the 100th
generation is the main constraint. Due to the lower limit
of cutting force, limit of the machine power becomes
redundant.

 In this case depth of cut and cutting speed are
decreased while feed rate increased to minimize the
total machining time. Number of passes is also
increased as the depth of cut decreases over the
generation. By genetic algorithm the most suitable
machine is also selected for this specific machining
operation. Here among three different machines, third
one is selected because the nearest of the required rpm
is available in machine 3.

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0

1

2

3

4

5

6

7

S a m p le N o

D
e

p
th

 o
f

C
u

t(
m

m
)

In i t ia l d e p t h o f c u t

Fig. 5 Initial depth of cuts

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

5

5 . 5

6

S a m p le N o

D
e

p
th

 o
f

C
u

t(
m

m
)

D e p t h o f c u t a t 1 5 th G e n e ra t io n

Fig. 6 Depth of cuts at 20th generation

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
1 . 2

1 . 4

1 . 6

1 . 8

2

2 . 2

2 . 4

2 . 6

2 . 8

S a m p le N o

D
e

p
th

 o
f

C
u

t(
m

m
)

F in a l D e p t h o f C u t

Fig. 7 Final depth of cuts(40 generation)

ICME 2001, Dhaka, December 26-28

Section VI: Manufacturing Process 232

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

1 . 1

S a m p le N o

F
e

e
d

 r
a

te
(m

m
/r

e
v)

In it ia l F e e d ra t e

Fig. 8 Initial feed rates

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0 .6

0 .6 5

0 .7

0 .7 5

0 .8

0 .8 5

0 .9

0 .9 5

1

1 .0 5

1 .1

S a m p le N o

F
ee

d
ra

te
(m

m
/r

ev
)

F e e d ra te s a t 2 0t h G e n e ra t io n

Fig. 9 Feed rates at 20th generation

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0 .5

1

1 .5

2

2 .5

3

3 .5

S a m p le N o

F
ee

d
ra

te
(m

m
/r

ev
)

F in a l fe ed ra te

Fig. 10 Final feed rates (40 generation)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

S a m p le N o

C
u

tt
in

g
 s

p
e

e
d

(m
/m

in
)

In i t i a l c u t t in g s p e e d

Fig. 11 Initial cutting speeds

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

S a m p le N o

C
u

tt
in

g
 s

p
e

e
d

(m
/m

in
)

C u t t in g s p e ed s a t 20 th G e n e ra t io n

Fig. 12 Cutting speeds at 20th generation)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

S a m p le N o

C
u

tt
in

g
 S

p
e

e
d

(m
/m

in
)

F in a l c u t t in g s p e e d

Fig. 13 Final cutting speeds (40 generation)

Table 8.1: The results after 40 and 100 generation

Parameters After 40 generation
(Population size 50)

After 100 generation
(Population size 100)

Depth of cut (mm) 2.0409 1.285
Feed rate (mm/rev) 0.4480 0.751
Cutting speed (m/min) 102.0994 99.353
Cutting force (kN) 1.9995 2.0000
Power (kW) 3.4024 3.7003
Rpm 162.4962 176.6797
Machine 3 3
No. of pass 48 82
Time 131.8657 114

CONCLUSION

Optimization of process parameters is one of the
important task of the CAPP systems. The impact of AI
techniques in CAPP had proven by many research
projects. GA is promoted as one of the promising AI
techniques to be used for solving nonlinear and
combinatorial problems involved in process planning.
With the GA-base optimization system developed in
this work, it would be possible to increase machining
efficiency by using optimal cutting parameters.

ICME 2001, Dhaka, December 26-28

Section VI: Manufacturing Process 233

REFERENCES

1. Dereli, T. and Filiz, H.I., “ Optimization of Process
Planning functions by Genetic algorithm”,
Computers and Industrial Engineering, Vol. 36,
pp281-308, 1999

2. Goldberg. D. E., “Genetic algorithms in search,
optimization & machine learning”, Addison-
Wesley 1989. reading

3. Lawrence E. Doyel, “Manufacturing Processes and
Materials for Engineers”, 1985 Prentice-Hall
International, Third edition, pp 486-500

4. Ahmad, N.,”A dynamic model of Computer Aided
Process Planning for rotational components”,
M.Engg. thesis, 2001, BUET

5. Tulkoff, J., “ Computer Aided Process Planning”,
Production Hand Book, 4th Edition, 1987

6. Wang H.P. and Jain K.L., “Computer Aided
Process Planning”, Elsevier 1991
pp-356-364

	INTRODUCTION

