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Abstract  In CAPP systems process parameter optimization is one of the key areas for research and 
development. Traditional techniques have very limited scope because of the complexity of the 
optimization problem. Due to the rapid development of computer technology Genetic Algorithms 
(GAs), which are robust search algorithm, have been found to be suitable and efficient tools for 
optimization in such cases. In this work process planning parameters for machining rotational 
components are optimized by a Genetic Algorithm Optimization Toolbox developed in Matlab 
environment. Here machining time is considered as the objective function and constraints are 
machine capacity, limits of feed rate, depth of cut, cutting speed etc. Machining time is minimized 
through a series of generations while some genetic operators are applied at each generation. The 
result of the work shows how a complex optimization problem is handle by a genetic algorithm and 
converges very quickly. 
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INTRODUCTION 
 

   Optimization of process planning is one of the 
foremost targets of Manufacturing Systems. Numbers of 
research works are performed for generating optimum 
process plan. The optimum process plan may be on the 
basis of time or cost or on the basis of some weighted 
combination of these two. Tool selection, machine 
selection, process selection and tool path selection, 
process parameter selection are the most important areas 
for optimization in process planning. Process parameter 
optimization is the final stage of a CAPP system. 
Determination of optimum parameters is one of the vital 
stages of process planning since the economy of 
machining operation plays the most important role in 
increasing productivity and competitiveness. Genetic 
algorithm is one of the most efficient tools for 
optimization of such problems. This paper presents the 
application of GA in process planning parameters 
optimization. 

 
GA AND OTHER SEARCH ALGORITHMS 

 
   Many works have so far been done to optimize these 
parameters by using different optimization techniques 
like goal programming, multistage dynamic 
programming, linear programming, geometric 
programming, branch and bound algorithm etc. But all 
of them face great difficulties when the number of 
variables increases, because the problem becomes 
combinatorially explosive and hence computationally 
complex [1]. Different researchers used different 
techniques to optimize process parameters but all of 
those techniques have their own limitations.  

   Direct search methods include function evaluation and 
comparisons only. Gradient search methods need values 
of function and its derivatives, and their 
computerizations are also problematic. They are more 
difficult than the direct search methods, but they can 
yield more accurate for some computational efforts.  
    
   Derivative-based mathematical optimizations are not 
manageable for optimizing functions of discrete 
variables. Dynamic programming that may be applied to 
problems whose solution involves a multistage decision 
process, can handle both continuous and discrete 
variables. Contrary to many other optimization methods 
it can yield a global optimum solution. However if the 
optimization problem involves a large number of 
independent parameters with a wide range of values (as 
in the case of optimization of cutting parameters), the 
use of dynamic programming is limited. As the numbers 
of variables and constraints increases, the optimum has 
a tendency to grow flatter with less probability that the 
realizable optimum will be a mathematical optimum, 
and hence computational effort increases considerably.  
    
   Geometric programming is a useful method that can 
be used for solving nonlinear problems subject to 
nonlinear constraints, especially if the objective 
function to be optimized is a polynomial with fractional 
and negative exponents, while the constraints may be 
incorporated in the solution techniques. It is more 
powerful than other mathematical optimization 
techniques when the problem is restricted by one or two 
constraints. However if the degree of difficulty 
increases, the formulated problem might be more 
complicated than the original problem. Geometric 
programming can only handle continuous variables.  *Email: nafis@ipe.buet.edu 
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   The solution to the optimization problems, which 
includes real value variables, can be obtained using 
numerous methods. There is no efficient all-purpose 
optimization method available for nonlinear 
programming problems like process parameter 
optimization. The computational time and cost involved 
in the determination of optimal parameters commonly 
depends on the complexity or simplicity of the model. 
Some models can produce accurate solutions by making 
rigorous computation, which is not economic in terms 
of computation time and cost. Sometimes the solution 
from these models may not be optimal. Some other 
models may develop solutions far from the optimum in 
a fast manner. Therefore a compromise between the 
high accuracy of a rigorous solution and low accuracy 
of an oversimplified solution should be made.  
 
  Genetic Algorithms (GAs) are robust search 
algorithms that are based on the mechanics of natural 
selection and natural genetics. They combine the idea of 
"survival of the fittest" with some of the mechanics of 
genetics to form a highly effective search algorithm. 
Genetic algorithms belong to a class of stochastic 
optimization techniques known as evolutionary 
algorithms. Among the three major types of 
evolutionary algorithms (genetic algorithms, 
evolutionary programming, and evolution strategies) 
genetic algorithms are the mostly widely used. GAs are 
most often used for optimization of various systems, 
especially complex problems such as those involving 
manufacturing systems analysis.  
 

GA AND NATURAL EVOLUTION PROCESS 
  

   Genetic Algorithms (GAs) are search strategy which 
are able to search very large solution spaces efficiently 
by providing a concise computational cost, since they 
use probabilistic transaction rules instead of 
deterministic ones. They are easy to implement and are 
increasingly used to solve inherently intractable 
problems quickly. Although GAs are heuristic 
procedures themselves, they test a wealth of samplings 
from different regions of the search space for fitness 
simultaneously, and sort out and exploit regions of 
interest very quickly [1]. 

 
   The idea behind genetic algorithm is based on the 
natural evolution phenomena. Rabbits are taken as 
example: at any given time there is a population of 
rabbits. Some of them are faster and smarter than the 
other rabbits. These faster, smarter rabbits are less likely 
to be eaten by foxes, and therefore more of them survive 
and make more rabbits. Of course, some of the slower, 
dumber rabbits will survive just because they are lucky. 
This surviving population of rabbits starts breeding. The 
breeding results in a good mixture of rabbits’ genetic 
material: some slow rabbits breed with fast rabbits, 
some fast with fast, some smart rabbits with dumb 
rabbits, and so on. As a resulting baby rabbits will (on 
average) be faster and smarter than those in the original 

population because more faster, smarter rabbits survived 
the foxes. (It is a good thing that the foxes are 
undergoing a similar process-otherwise the rabbits 
might become too fast and smart for the foxes to catch 
any of them). In the similar fashion, in an artificial 
genetic algorithm, a crude population is refined through 
a series of generations while some genetic operators 
work on the population.  

 
TYPICAL GA PROCEDURE 

 
   GAs start with an initial set of random solutions called 
the population. There is no strict rule to determine the 
population size. Population sizes of 100-200 are 
common in GA research. Through the steps described 
below, the population will eventually converge. Larger 
population size ensures greater diversity but requires 
more computer resource. Once the population size is 
chosen, the initial population is randomly generated. 
 
   If the population has 20 strings of 10 bits then 
10.20=200 bits must be set to either 0 or 1. The 
computer sets the value of 200 bit positions with 
simulated coin toss. Any string with decimal equivalent 
greater than the maximum limits is discarded and 
replaced with another randomly chosen string that meets 
the constraint. For example, range of a parameter is 
from 1000 to 1100 and an individual of the population is 
randomly taken as 0111 or 1101, which falls outside the 
above range. This individual will be discarded and 
another individual will be random taken and checked 
whether it falls within the range. This process continues 
until all the individual of the population are within the 
specific range. 
    
   Once the chromosomes are coded as bit strings, the 
genetic algorithm manipulates these strings using three 
genetic operators —reproduction, crossover, and 
mutation. The chromosomes are said to evolve through 
successive generations. In each generation, the fitness of 
each chromosome is evaluated; chromosomes with a 
higher fitness value are more likely to be selected. 
 
   Reproduction takes the current population of bit 
strings (that have already been evaluated and given a 
fitness value), makes copies of the strings with better 
fitness values, and places these strings in a "mating 
pool". The reproduction operator may be implemented 
in algorithmic form in different ways. The easiest way is 
to create a biased roulette wheel slot sized in 
proportion to each current string in the population. 
Another selection technique is normalized 
geometricselection which is a ranking selection function 
based on the normalized geometric distribution.  
 
   After the selection, the strings are paired up, and a 
percentage of the pairs trade parts of their strings. This 
is known as crossover. Different crossover techniques 
are used in GA. Simple crossover involves two 
parentsand crossover points are selected randomly.  If  
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two parents to be used for generating new chromosomes 
are 
   {Parent 1: 0 1 1 0 1 } and {Parent 2: 1 0 1 1 0 } and if 
a crossover point is chosen randomly as 4 the following 
children will be produced: {Child 1: 0 1 1 0 0} and 
{Child 2: 1 0 1 1 1} 
    
   Here first four digits of child-1 (i.e. 0 1 1 0) are from 
parent-1 and the rest of the digits (i.e. 1) from parent-2. 
Similarly first 4 digits of child-2 are from parent-2 and 
the rest of the digits from parent-1.  Figure 1 is the 
graphical representation of the crossover function. 
 
   These newly formed strings by crossover operator are 
then subjected to a random screening, where random 
bits in random strings are picked and modified. This is 
known as mutation. Mutation introduces random 
variations into the population. It zaps a ‘0’ to a ‘1’ and 
vise versa in a binary string. Each bit position for every 
member of the population is examined. The computer 
randomly decides whether mutation should occur or not. 
Mutation is usually performed with low probability; 
otherwise it will defeat the order building being 
generated through selection and crossover. Mutation 
attempts to bump the population gently onto a slightly 
better course.  
 
   As an example consider a string as shown in figure 2. 
Shaded and clear boxes represent two different options 
for a bit position in a string:’1’ and ‘0’. If the sixth 
position of the string is randomly chosen as mutation 
point, ‘1’ at that position will be replaced by ‘0’ by 
mutation operator. 
 
   After this step, the remaining strings form the next 
generation of bit strings. They are evaluated, given a 
fitness value, and again subjected to reproduction, 
crossover, and mutation. This combined process of 
exploiting knowledge about a search space 
(reproduction) and exploring a search space (crossover, 
mutation) is what drives the performance of a genetic 
algorithm. Over time, bad bit strings disappear from a 
population, while good bit strings live on and reproduce 
with other good strings to form even better strings.  

 
 
 
 

CODING THE CROMOSOMES 
 
   The individuals comprising the population are known 
as chromosomes. In most genetic algorithm 
applications, the chromosomes are coded as a series of 
zeroes and ones, or a binary bit string. This usually 
involves discretization of the search space into a certain 
number of points that can be represented by a certain 
length of bit string. For binary bit strings, this would 
mean that a search space would need to be split into 2n  
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BLEM STATEMENT 

 
s, which have surfaces symmetric to 
 usually machined by lathes machine. 
 required surface finish, rough turning 
 operations are required. But initially 
ration creates the shape of the surface 

y removing a materials and the major 
ning time is usually required for rough 
. For this reason cutting parameters 
, depth of cut, cutting speed etc. are 
r rough turning operation.  

ne shop may have several lathes with 
nd rpm. So, it is also necessary to 

ine and rpm that will require minimum 
g a specific surface. Though total time 
g time, setup time, approach and 
 cutting tool, in most of the cases, 



ICME 2001, Dhaka, December 26-28 

Section VI: Manufacturing Process  230 

machining time is responsible for the major part of total 
cost. Other cost is not as significant as machining time. 
So, in this optimization problem the cutting parameters 
are determined by minimizing the machining time. 

 
PROBLEM FORMULATION 

 
   It is already mentioned that only cylindrical surfaces 
are considered in this work. These types of surfaces are 
machined by turning operation to attain the required 
shape of the surfaces. An example is presented in figure 
4. For a horizontal cylindrical surface machining 
time(Tm) for turning operation depends on  

  
 
 
 

 
 
 
 
 
 
 
 
 
 
the total length of the surface (L) to be machined, feed 
rate (f) and rotational speed (Nw) of the work piece [3] 
i.e. machining time is: 

Tm=
wNf

L
×

   (1) 

If the length of a feature is Lf and number of pass is 
npass then  

L= Lf × npass. So,  

Tm= 
w

passf

Nf
nL

×
×

   (2) 

   In figure 3 depth of cut, initial radius and final radius 
are denoted by d, Ri and Rf respectively. Therefore,  

Total cut = Ri-Rf 
Semifinish cut = Remainder of ((Ri-Rf), d) 
 npass= {(Ri-Rf)-Remainder of ((Ri-Rf), d)}/d (3) 
 
   To minimize the rough turning, the material removal 
rate should be as high as possible. As material removal 
rate is proportional to depth of cut, feed rate and cutting 
speed, these parameters should be increased for a higher 
material removal rate. But these parameters cannot be 
increase indefinitely due to limitation of maximum 
allowable force on the cutting tool and also maximum 
power limit of the machine tool in some cases. Power 
(P), and cutting force (Fc) can be calculated by 
equations 4 and 5 [3]. These two values are checked 
against their limits (i.e. Pmax and Fmax )  when depth of 
cut, feed rate and cutting speed is optimized. 
   Power, P=Fc×V   (4) 
   Cutting force, Fc=Cf ×fa×db  (5) 

   Here Cf , a, b are constants. Here V, f and d are 
independent variables.  
    
   Rough turning operation are usually performed at 
some low cutting speed with high depth of cut and high 
feed rate as the metal removal rate is more important 
than surface finish. 
 
   From the machine database we can collect the 
available spindle speeds. The effective limits of rpm of 
the spindle is chosen according to the following 
equation, 
   Nmax=Max (available speeds)  (6) 
   Nmin=Min (available speeds)  (7) 
   If the actual rpm of the spindle is Nw, can be 
calculated by equation, 

Nw= 
R
V

××
×

π2
1000

 

   This rpm is checked against the limits (Nmin and Nmax) 
during the optimization process. 
   As a result the optimization model becomes 

   Minimize, Tm=  
w

passf

Nf
nL

×
×

  (8) 

   Subject to 
   fmin < f < fmax    (9) 
  Vmin < V < Vmax    (10) 
  dmin < d < dmax    (11) 
  Fc < Fmax         i.e. Cf ×fa×db< Fmax (12) 

  Nmin<N<Nmax i.e. Nmin< R
V

××
×

π2
1000

<Nmax (13) 

  Pm < Pmax        i.e. Cf ×fa×db×V < Pmax (14) 
 

   This is a nonlinear optimization problem where feed 
rate, cutting speed and depth of cut are independent and 
real valued parameters. Limits of these three parameters 
depend on the workpiece and tool material combination. 
Here workpiece and tool materials are Low C free 
machining steel and uncoated carbide. The fourth 
constraint is maximum allowable force on cutting tool. 
Typical values are taken for the last three constraints i.e. 
cutting force, rpm and power of machines.  As these 
parameters are not independent, penalty method is used 
[2] to keep them within their ranges.   

 
PLOTS AND TABLES 

 
   Figure 4 shows the changes of the average and best 
fitness over the generations. Figures 5-13 are related to 
the parameters at different generation.  

 
RESULT FROM MATLAB PROGRAM 

  
   As stated in earlier the first step of GA is to create an 
initial population. Individual values for different 
parameters in the initial population are chosen within 
their ranges at random. Figure 5, 8 and 11 are the initial 
values of depth of cut, feed rate and cutting speed. It is 
clear from these figures that initial population is spread 
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over the whole solution space instead of being localized 
because initial population is created randomly. This 
diversity of the population increases the region under 
search to find the global optima.  
 
   From the initial set of data, GA starts to converge very 
quickly by using some genetic operators such as 
reproduction, crossover, and mutation (discussed in 
section7.3). Figure 6, 9 and 12 describe the intermediate 
situation of the cutting parameters. These parameters are 
plotted after running the program for 20 generation. It is 
assumed that from the initial random positions the 
parameters are moving toward some specific values. 

  
 

 
Fig. 4 Generation vs. Average and best fitness 
 

   After 40 generation final values of these parameters 
are plotted in figure 7, 10 and 13. These three figures 
demonstrate that when GA reaches to or very close to 
optimum solution, all the values of a specific parameter 
in the final population becomes similar. Some exception 
exist i.e. some values are away from the optimum at 
each generation because GA checks whether it is 
proceeding towards a local optima or global by mutation 
operator.  
 
   It is also clear from figure 4 that the convergence rate 
at an earlier stage is much more higher than that of the 
later stage. Average fitness and best fitness values 
decrease very rapidly in the initial stages [1-20 
generation]. As the number of generation increases, rate 
of changes in these two fitness values decrease rapidly 
and programs are so designed that genetic algorithm 
terminates when no significant improvement occurs in 
the solution. Usually maximum number of generation is 
set before the program starts. Almost all the individuals 
in a population become similar at the final stage [figure 
7,10 and 13.  
 
   In table 1 comparisons of the parameters are presented 
after 40 generation and 100 generation with population 
size 50 and 100 respectively. It explains the advantage 
of high population size and maximum number of 
generation for the optimization problem.  
 

   Total machining time, which is the objective function 
in this minimization problem is improved from 131 
minutes to 114 minutes i.e. almost 13% over the 60 
generation. Here cutting force on the tool, which 
reaches near the maximum limit (2kN) at 40th 
generation and same as the maximum limit at the 100th 
generation is the main constraint. Due to the lower limit 
of cutting force, limit of the machine power becomes 
redundant.  
 
   In this case depth of cut and cutting speed are 
decreased while feed rate increased to minimize the 
total machining time. Number of passes is also 
increased as the depth of cut decreases over the 
generation. By genetic algorithm the most suitable 
machine is also selected for this specific machining 
operation. Here among three different machines, third 
one is selected because the nearest of the required rpm 
is available in machine 3. 
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Fig. 5 Initial depth of cuts 
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Fig. 6 Depth of cuts at 20th generation 
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Fig. 7 Final depth of cuts(40 generation) 
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Fig. 8 Initial  feed rates 
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Fig. 9 Feed rates at 20th generation 
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Fig. 10 Final  feed rates (40 generation) 
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Fig. 11 Initial cutting speeds 
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Fig. 12 Cutting speeds at 20th generation) 
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Fig. 13 Final cutting speeds (40 generation) 

 
 

Table 8.1: The results after 40 and 100 generation 
 

Parameters After 40 generation 
(Population size 50) 

After 100 generation 
(Population size 100) 

Depth of cut (mm) 2.0409 1.285 
Feed rate (mm/rev) 0.4480 0.751 
Cutting speed (m/min) 102.0994 99.353 
Cutting force (kN) 1.9995 2.0000 
Power (kW) 3.4024 3.7003 
Rpm  162.4962 176.6797 
Machine 3 3 
No. of pass 48 82 
Time 131.8657 114 

 
 

CONCLUSION 
 

Optimization of process parameters is one of the 
important task of the CAPP systems. The impact of AI 
techniques in CAPP had proven by many research 
projects. GA is promoted as one of the promising AI 
techniques to be used for solving nonlinear and 
combinatorial problems involved in process planning. 
With the GA-base optimization system developed in 
this work, it would be possible to increase machining 
efficiency by using optimal cutting parameters.  
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